69 research outputs found

    Sistema per la remotizzazione della gestione di una Wireless Sensor Network e per la segnalazione di allarmi

    Get PDF
    Il lavoro presentato in questa tesi è stato svolto presso il Dipartimento di Ingegneria dell'Informazione dell'Università degli Studi di Pisa. L'obbiettivo è permettere ad una Wireless Sensor Network, tipicamente "stand alone", di interfacciarsi col mondo esterno, consentendo agli utenti interessati di potervi accedere da remoto. È stata preparata appositamente un'interfaccia utente che permette di monitorare la rete, mostrare le misure provenienti dai nodi ed effettuare su di esse un controllo di stato, implementando il servizio "mail alert" in caso di misura in stato di allarme

    Reliable segment routing

    Get PDF

    Experimental Demonstration of Segment Routing

    Get PDF

    Segment routing for effective recovery and multi-domain traffic engineering

    Get PDF
    Segment routing is an emerging traffic engineering technique relying on Multi-protocol Label-Switched (MPLS) label stacking to steer traffic using the source-routing paradigm. Traffic flows are enforced through a given path by applying a specifically designed stack of labels (i.e., the segment list). Each packet is then forwarded along the shortest path toward the network element represented by the top label. Unlike traditional MPLS networks, segment routing maintains a per-flow state only at the ingress node; no signaling protocol is required to establish new flows or change the routing of active flows. Thus, control plane scalability is greatly improved. Several segment routing use cases have recently been proposed. As an example, it can be effectively used to dynamically steer traffic flows on paths characterized by low latency values. However, this may suffer from some potential issues. Indeed, deployed MPLS equipment typically supports a limited number of stacked labels. Therefore, it is important to define the proper procedures to minimize the required segment list depth. This work is focused on two relevant segment routing use cases: dynamic traffic recovery and traffic engineering in multi-domain networks. Indeed, in both use cases, the utilization of segment routing can significantly simplify the network operation with respect to traditional Internet Protocol (IP)/MPLS procedures. Thus, two original procedures based on segment routing are proposed for the aforementioned use cases. Both procedures are evaluated including a simulative analysis of the segment list depth. Moreover, an experimental demonstration is performed in a multi-layer test bed exploiting a software-defined-networking-based implementation of segment routing

    Smart filterless optical networks based on optical spectrum analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Dynamic network operations can produce power fluctuations of the established connections in filterless optical networks. In addition, the gridless nature of filterless networks make that some (un)intentional effects such as transponders laser drift might disrupt the proper operation of lightpaths. To overcome these issues, we present a monitoring system exploiting data analytics and cost-effective optical spectrum analyzers to achieve smart filterless network operation. Experimental measurements are used to validate the proposed data analytics-based approaches, as well as to find the optimal resolution to achieve maximum performance with minimum cost.This work was partially supported by the EC through the METRO-HAUL project (G.A. nº 761727), from the AEI/FEDER TWINS project (TEC2017-90097-R), and from the Catalan ICREA Institution.Peer ReviewedPostprint (author's final draft

    Extending P4 in-band telemetry to user equipment for latency-and localization-aware autonomous networking with AI forecasting

    Get PDF
    In beyond-5G networks, detailed end-to-end monitoring of specific application traffic will be required along with the access-backhaul-cloud continuum to enable low latency service due to local edge steering. Current monitoring solutions are confined to specific network segments. In-band network telemetry (INT) technologies for software defined network (SDN) programmable data planes based on the P4 language are effective in the backhaul network segment, although limited to inter-switch latency; therefore, link latencies including wireless and optical segments are excluded from INT monitoring. Moreover, information such as user equipment (UE) geolocation would allow detailed mobility monitoring and improved cloud-edge steering policies. However, the synchronization between latency and location information, typically provided by different platforms, is hard to achieve with current monitoring systems. In this paper, P4-based INT is proposed to be thoroughly extended involving UE. The INT mechanism is designed to provide synchronized and accurate end-to-end latency and geolocation information, enabling decentralized steering policies, i.e., involving UE and selected switches, without SDN controller intervention. The proposal also includes an artificial-intelligence-assisted forecast system able to predict latency and geolocation in advance and trigger faster edge steering

    Cluster-based Method for Eavesdropping Identification and Localization in Optical Links

    Full text link
    We propose a cluster-based method to detect and locate eavesdropping events in optical line systems characterized by small power losses. Our findings indicate that detecting such subtle losses from eavesdropping can be accomplished solely through optical performance monitoring (OPM) data collected at the receiver. On the other hand, the localization of such events can be effectively achieved by leveraging in-line OPM data.Comment: 4 pages, 6 figures, Asia Communications and Photonics Conference (ACP) 202

    Dynamic Virtual Network Function Placement over a Software-Defined Optical Network

    Get PDF
    We demonstrate how to dynamically place Virtual Network Functions over a software defined optical network integrating IT computing and real IP over WDM resources, thus allowing exchange of real traffic

    User Plane Function Offloading in P4 switches for enhanced 5G Mobile Edge Computing

    Get PDF
    This demo shows a 5G X-haul testbed enhanced with P4 switches implementing the offloading of the User Plane Function module. The P4 code includes GTP protocol encapsulation/decapsulation function, fully configurable N3-N6-N9 steering, and advanced online monitoring of the experienced latency metadata
    • …
    corecore